Successful Conversion of the Bacillus subtilis BirA Group II Biotin Protein Ligase into a Group I Ligase
نویسندگان
چکیده
Group II biotin protein ligases (BPLs) are characterized by the presence of an N-terminal DNA binding domain that allows transcriptional regulation of biotin biosynthetic and transport genes whereas Group I BPLs lack this N-terminal domain. The Bacillus subtilis BPL, BirA, is classified as a Group II BPL based on sequence predictions of an N-terminal helix-turn-helix motif and mutational alteration of its regulatory properties. We report evidence that B. subtilis BirA is a Group II BPL that regulates transcription at three genomic sites: bioWAFDBI, yuiG and yhfUTS. Moreover, unlike the paradigm Group II BPL, E. coli BirA, the N-terminal DNA binding domain can be deleted from Bacillus subtilis BirA without adverse effects on its ligase function. This is the first example of successful conversion of a Group II BPL to a Group I BPL with retention of full ligase activity.
منابع مشابه
The Atypical Occurrence of Two Biotin Protein Ligases in Francisella novicida Is Due to Distinct Roles in Virulence and Biotin Metabolism
UNLABELLED The physiological function of biotin requires biotin protein ligase activity in order to attach the coenzyme to its cognate proteins, which are enzymes involved in central metabolism. The model intracellular pathogen Francisella novicida is unusual in that it encodes two putative biotin protein ligases rather than the usual single enzyme. F. novicida BirA has a ligase domain as well ...
متن کاملFunctional definition of BirA suggests a biotin utilization pathway in the zoonotic pathogen Streptococcus suis
Biotin protein ligase is universal in three domains of life. The paradigm version of BPL is the Escherichia coli BirA that is also a repressor for the biotin biosynthesis pathway. Streptococcus suis, a leading bacterial agent for swine diseases, seems to be an increasingly-important opportunistic human pathogen. Unlike the scenario in E. coli, S. suis lacks the de novo biotin biosynthesis pathw...
متن کاملAnalysis of HIV-1 Gag protein interactions via biotin ligase tagging.
UNLABELLED We have examined the interactions of wild-type (WT) and matrix protein-deleted (ΔMA) HIV-1 precursor Gag (PrGag) proteins in virus-producing cells using a biotin ligase-tagging approach. To do so, WT and ΔMA PrGag proteins were tagged with the Escherichia coli promiscuous biotin ligase (BirA*), expressed in cells, and examined. Localization patterns of PrGag proteins and biotinylated...
متن کاملConservation of the biotin regulon and the BirA regulatory signal in Eubacteria and Archaea.
Biotin is a necessary cofactor of numerous biotin-dependent carboxylases in a variety of microorganisms. The strict control of biotin biosynthesis in Escherichia coli is mediated by the bifunctional BirA protein, which acts both as a biotin-protein ligase and as a transcriptional repressor of the biotin operon. Little is known about regulation of biotin biosynthesis in other bacteria. Using com...
متن کاملPurification and characterization of intact and truncated forms of the Escherichia coli biotin carboxyl carrier subunit of acetyl-CoA carboxylase.
Biotin biosynthesis and retention in Escherichia coli is regulated by the multifunctional protein, BirA. The protein acts as both the transcriptional repressor of the biotin biosynthetic operon and as a ligase for covalent attachment of biotin to a unique lysine residue of the acetyl-CoA carboxylase. Biotinyl-5'-AMP is the activated intermediate for the ligase reaction and the allosteric effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014